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Motivating question

Suppose we have a random knot model or experimental data.

How do we know whether this model or data accurately depicts

the behaviors of large knots?

We need some sort of baseline for comparison.
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Main Results

For a given c, consider all 2-bridge knots with c crossings.

Part I Main Theorem [C.-Lowrance], [Suzuki-Tran]:

The average Seifert genus is asymptotically linear:

g(c) =
c
4
+

1
12

+ ε(c),

where ε(c)→ 0 as c → ∞.

Part III Main Theorem [C.-Lowrance-Raanes]:

The average absolute value of the signature σ(c) satisfies:

lim
c→∞

σ(c) − √
2c
π

 = 0.
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Background from Knot Theory

The bridge number is the minimum number of local max/min
of any height function on any diagram of the knot.

Today we restrict our attention to knots with bridge number 2.
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Background from Knot Theory

A 2-bridge knot has one of the following forms (by parity):

m1

m2 mk−1

mk

m1

m2

mk−1

mk

with the ith twist region having mi crossings.

All 2-bridge knots are alternating knots.

Our 2-bridge knots will have all m2i+1 > 0 with each written σ1

and all m2i < 0 with each written σ−1
2 .
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I. Average Seifert genus

The Seifert genus g(K) of a knot K is the minimum genus
of an orientable surface whose boundary is K
taken over all such surfaces.

Theorem [Frankl-Pontyagin 1930], [Seifert 1934]:

Every knot has some such surface, a Seifert surface.

[Seifert]’s algorithm:

  

Cap off each circle with a disk. Attach twisted bands at crossings.

Moshe Cohen (www2.newpaltz.edu/∼cohenm/) Average genus and average signature of 2-bridge knots



I. Average Seifert genus

From Visualization of Seifert surfaces [Wijk-Cohen 2006]

Let s be the number of Seifert circles of a knot diagram.

Theorem [Murasugi 1958], [Crowell 1959]:

The Seifert genus of an alternating knot K with c crossings
is the genus obtained from applying Seifert’s algorithm

to an alternating diagram D with

g(K) = g(D) =
c + 1 − s

2
.
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I. Average Seifert genus

[Dunfield et al] give experimental data that suggests that

the genus grows linearly w.r.t. crossing number.
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I. Average Seifert genus

Motivating ideas: On expected genus

Theorem [Brooks-Makover 2004, Gamburd-Makover 2002]:
for a random Riemann surface.

Theorem [Linial-Nowik 2011]: for a random chord diagram.

Part I Main Theorem [C.-Lowrance], [Suzuki-Tran]:

The average Seifert genus g(c) over all 2-bridge knots with c
crossings is asymptotically linear w.r.t. the crossing number c:

g(c) =
c
4
+

1
12

+ ε(c),

where ε(c)→ 0 as c → ∞.
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I. Average Seifert genus

Background diagrammatics [Koseleff-Pecker 2010s]:

Chebyshev parametrizations and billiard table diagrams.

Theorem [C.-Krishnan 2015], [C.–Even-Zohar–Krishnan 2018]:

A random model for 2-bridge knots.
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I. Average Seifert genus

Number the crossings from left to right.
A crossing oriented horizontally is denoted H.
A crossing oriented vertically is denoted V .

Proposition [C. 2021, Property 7.1 on writhe]:

In a billiard table diagram with a = 3:
for n = 3m crossings, they are oriented (VHV)m, and
for n = 3m + 1 crossings, they are oriented H(VVH)m.
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I. Average Seifert genus

Theorem [C.-Krishnan 2015], [C.–Even-Zohar–Krishnan 2018]:

Obtain “reduced” words, avoiding over-counting.

Consider the partially-double-counted set T(c)
of 2-bridge knots with c crossings

only counts palindromic knots once.

Theorem [C. 2023]:

A lower bound for average Seifert genus over T(c).

Theorem [C.-Lowrance]:

The size t(c) of the set T(c) satisfies t(c) = t(c − 1) + 2t(c − 2),
giving the Jacobsthal numbers.
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I. Average Seifert genus

Main proof ingredient [C.-Lowrance]:

Bijection between T(c) and T(c − 1) t T(c − 2) t T(c − 2)
by considering the last three crossings (here for odd c):

Case Word in T(c) 7→ Word in Set
(1) wσ1σ

−1
2 σ1 7→ wσ−1

2 σ−1
2 T(c − 1),

(2) wσ−1
2 σ1σ1 7→ wσ1σ

−1
2 T(c − 1),

(3) wσ1σ1σ1 7→ wσ1 T(c − 2), and
(4) wσ−1

2 σ−1
2 σ1 7→ wσ1 T(c − 2).

The first two cases partition T(c − 1),
and the last two cases give two copies of T(c − 2).
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I. Average Seifert genus

Terminal
String

Alternating
Diagram

Seifert
State

σ3
1

Case 3

Terminal
String

Alternating
Diagram

Seifert
State

σ1

σ−2
2 σ1

Case 4
σ1
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I. Average Seifert genus

Terminal
String

Alternating
Diagram

Seifert
State

σ1σ
−1
2 σ1

Case 1

Terminal
String

Alternating
Diagram

Seifert
State

σ−2
2

σ−2
2 σ2

1

Case 2A
σ−1

2 σ1σ
−1
2

σ1σ
−1
2 σ2

1

Case 2B
σ2

1σ
−1
2
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I. Average Seifert genus

Theorem [C.-Lowrance]:

Let s(c) be the total number of Seifert circles for knots in T(c).
Then s(c) satisfies the recursion

s(c) = s(c − 1) + 2s(c − 2) + 3t(c − 2).

We repeat the process for the palindromic knots,
add them in, and divide by two.

Part I Main Theorem [C.-Lowrance], [Suzuki-Tran]:

The average Seifert genus g(c) over all 2-bridge knots with c
crossings is asymptotically linear w.r.t. the crossing number c:

g(c) =
c
4
+

1
12

+ ε(c),

where ε(c)→ 0 as c → ∞.
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II. Distribution of genera approaches normal

Motivating ideas: On genus distribution of surfaces

Theorem [Chmutov-Pitel 2013, 2016]:

Randomly glue the sides of an n-gon: asymptotically normal.

Glue the sides of multiple polygonal disks: asymptotically normal.

Theorem [Even-Zohar–Farber 2021]:

Glue some of the sides together (surface with boundary):
asymptotically a bivariate normal distribution.

Theorem [Shrestha 2022]:

Square-tiled surfaces: satisfy a local central limit theorem.
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II. Distribution of genera approaches normal

Part II Main Theorem
[C.-DiNardo-Lowrance-Raanes-Rivera-Steindl-Wanebo]:

The distribution of genera of 2-bridge knots with crossing number c

approaches a normal distribution as c approaches ∞.

Questions: What does this say about

genus? 2-bridge knots? all knots? the normal distribution?

Thm [C.-DiNardo-Lowrance-Raanes-Rivera-Steindl-Wanebo]:

The median and mode are b c+2
4 c.

The variance approaches c
16 −

177
44 as c approaches ∞.
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II. Distribution of genera approaches normal

Thm [C.-DiNardo-Lowrance-Raanes-Rivera-Steindl-Wanebo]:

The # of 2-bridge knots with crossing number c and genus g is

t(c, g) =
1
2

(−1)f1(c,g)
f1(c,g)∑
n=0

(−1)n
(
n + g − 1

n

)

+(−1)f2(c,g)
f2(c,g)∑
n=0

(−1)n
(
n + 2g − 1

n

) ,
where f1(c, g) = b c+1

2 c − g − 1 and f2(c, g) = c − 2g − 1,

for 1 ≤ g ≤ b c−1
2 c and 0 otherwise.
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II. Distribution of genera approaches normal

Thm [C.-DiNardo-Lowrance-Raanes-Rivera-Steindl-Wanebo]:

The # of 2-bridge knots with crossing number c and genus g is

t(c, g) =
1
2

(−1)f1(c,g)
f1(c,g)∑
n=0

(−1)n
(
n + g − 1

n

)

+(−1)f2(c,g)
f2(c,g)∑
n=0

(−1)n
(
n + 2g − 1

n

) ,
where f1(c, g) = b c+1

2 c − g − 1 and f2(c, g) = c − 2g − 1,

for 1 ≤ g ≤ b c−1
2 c and 0 otherwise.
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III. Average (absolute value of) signature

From a knot diagram D we obtain a Seifert surface S as before.

We create the Seifert matrix M whose entries are
linking numbers of basis elements in H1(S).

Symmetrize this matrix M + MT .

The signature of the matrix M + MT is the difference between
the numbers of positive and negative eigenvalues.

The signature of a knot K is
the signature of any symmetrized Seifert matrix.
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III. Average (absolute value of) signature

Let sA (D) be the number of circles in the all-A -smoothing of D.

−→

Let n+(D) be the number of positive crossings of D.

positive negative

Theorem [Traczyk 2004]:

The signature of an alternating knot K with c crossings
as obtained from an alternating diagram D is

σ(K) = sA (D) − n+(D) − 1.
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III. Average (absolute value of) signature

Part III Main Theorem [C.-Lowrance-Raanes]:

The average absolute value of the signature σ(c) satisfies

lim
c→∞

σ(c) − √
2c
π

 = 0.

Theorem [C.-Lowrance-Raanes]:

The number s(c, σ) of words in T(c) corresponding to a knot
with signature σ satisfies the recurrence relation

s(c, σ) = s(c − 1, σ+(−1)c2)+ s(c − 2, σ+(−1)c2)+ s(c − 2, σ).
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III. Average (absolute value of) signature

Terminal
String

Alternating
Diagram

All-A
Smoothing

+−+
Case 1o

Terminal
String

Alternating
Diagram

All-A
Smoothing

++−

++−−+
Case 2o

+−

+−−+
Case 3o

+

++−+
Case 4o

+

Moshe Cohen (www2.newpaltz.edu/∼cohenm/) Average genus and average signature of 2-bridge knots



III. Average (absolute value of) signature

c\σ -10 -8 -6 -4 -2 0 2 4 6 8 10 12
3 1
4 1
5 2 1
6 1 3 1
7 1 5 4 1
8 1 5 9 5 1
9 1 6 15 14 6 1
10 1 7 20 29 20 7 1
11 1 8 27 50 49 27 8 1
12 1 9 35 76 99 76 35 9 1
13 1 10 44 111 176 175 111 44 10 1
14 1 11 54 155 286 351 286 155 54 11 1

The number s(c, σ) of words in T(c) with signature σ.
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III. Average (absolute value of) signature

The # of 2-bridge knots with crossing number c and signature σ
in T(c) we call s(c, σ).

Theorem [C.-Lowrance-Raanes]:

The sum of these entries in an odd and successive even row gives:

s(2m + 1, σ) + s(2m + 2, σ) =
(
2m − 1

k

)
.

Frustration:

We don’t have a simple combinatorial proof.
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Other related work

[Clark-Frank-Lowrance, Suzuki-Tran]
On the braid indices of 2-bridge knots.

With Kindred, Lowrance, Van Cott, and Shanahan.

Similar work for other knot invariants.
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Some references to my work

[C.–Krishnan 2015],
Random knots using Chebyshev billiard table diagrams

[C.–Even-Zohar–Krishnan 2018],
Crossing numbers of random 2-bridge Chebyshev knots

[C. 2021], The Jones polynomials of 3-bridge knots via
Chebyshev knots and billiard table diagrams

[C. 2023],
A lower bound on the average genus of a 2-bridge knot

[C.–Lowrance arXiv:2205.06122],
The average genus of a 2-bridge knot is asymptotically linear

[C.–DiNardo–Lowrance–Raanes–Rivera–Steindl–Wanebo
arXiv:2307.09399],
The distribution of genera of 2-bridge knots
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